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1 Abstract
Purpose: To develop and evaluate software tools and algorithms that automatically detect potential 

errors and issues in radiation therapy (RT) patients’ data and documents. The goals are to reduce human 
errors and improve patient safety and work efficiency.

Scope: Patients’ data and documents covered by this study are the structural data extractable from 
the clinical computer systems and database servers, and the documents could be analyzed by computer 
programs. These data and documents are normally checked by medical physicists manually in the clinical 
quality assurance workflow. 

Methods: Prototype software tools were developed for detecting simple errors and inconsistencies 
based on pre-defined error detection rules. They are further enhanced, automated, and evaluated 
in clinical settings. Novel error detection algorithms, including multiple machine 
learning-based algorithms, were developed to detect advanced errors that are not supported by 
rule-based error detection. 

Results: This study found that it was practical to develop and implement the automated and 
semi-automated electronic chart check software tools for modern RT departments. They are effective in 
error detection and could be useful for improving patient safety and work efficiency. 

Key Words: Radiation therapy, patient safety, quality assurance, machine learning, health 
informatics, error detection, chart checking.

2 Purpose
The purpose of this research project was to develop, evaluate, and clinically deploy a suit of 

health information software tools and algorithms to automatically and semi-automatically verify 
patient data and documents in radiation therapy departments. The purposes of the software tools and 
algorithms are to significantly reduce human errors, improve patient safety as well as treatment quality 
and work efficiency, and reduce the overall cost of care for cancer patients receiving radiation therapy. 

The three objectives are: 
1. To further automate our prototype EcCk (Electronic Chart Check) physics chart check tool

and to integrate it with other physics quality assurance tools we have developed.
2. To increase the error detection coverage in EcCk by developing novel algorithms and methods

for detecting previously unsupported advanced errors.
3. To measure the clinical impacts and dissemination.

3 Scope
3.1 Background

High risks associated with radiation treatments are related to the high severities of the potential 
errors and the complexities of the treatment systems, the treatment modalities, and the clinical workflow. 
In many aspects, radiotherapy (RT) treatments are as complex as surgeries, times up to 40+ fractions, 
across a period of months. Patient safety in radiation therapy (RT), as a paramount issue, has been widely 
recognized by national and international organizations, including IAEA, ICRP, NRC, WHO, ASTRO, 
and AAPM. RT errors were ranked as the #1 and #2 health technology hazards by ECRI in 2011 and 2012. 
The reported errors in the literature were about 2% per patient, believed to be a small percentage of 
total errors. Major incidences were rare but had caused very serious consequences, including death. At 
our RT department, the severe, high-risk, and mid-low-risk errors in both treatments and quality 
control (QC) steps are 0.55%, 6%, and 53% per patient, respectively, according to the reported 
clinical events. Not only efficiency and safety are affected; these errors also affect clinical 
outcomes and treatment qualities.  

Figure 1 shows a simplified, but already complex, clinical workflow in a RT department, with multiple 
groups of professionals involved and potential errors in each single step.
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Figure 1: A simplified RT clinical workflow. The middle row contains a partial list of potential errors. The bottom row contains the 
checks. The items in black text are already in clinical use, and the items in red text are to be implemented. Scales of the comprehensive 
checks are much greater than other checks.

Treatment quality is another major concern due to significant variations in quality control stemming 
from demanding and complex clinical workflows and the competition for the limited human and clinical 
resources. Accounting for ~50% of total human workload together, both safety and quality control have 
been improving due to workflow improvements according to the lessons learned from previous incidents 
and following published recommendations and guidelines. However, a significant gap persists between 
what is possible and what is typically realized in 
clinical practice. Fast-advancing new 
technologies and treatment modalities, which 
offer better options for tumor targeting and 
normal tissue sparing, demand much more 
safety and quality interventions that are often 
not sustainable or systematically resulting in 
under- or substandard utilization of these 
technologies. 

Figure 2: Computer systems in modern RT departments. TPS = 
Treatment Planning System. TMS = Treatment Management 
System. TDS = Treatment Delivery System. WMS = Workflow 
Management System. EMR = Electronic Medical Record. PACS = 
Picture Archiving and Communication System. 

 AAPM, ICRP, and ASTRO have published 
many recommendations to cover almost every 
aspect of RT workflow with the intent of ensuring 
patient safety, quality of care, and error 
prevention. Current error prevention and quality 

control measures in RT basically rely on human workers to follow the rigorous clinical workflows and to 
verify operation of the machines, the treatment data in computers, and the output by other workers. 
Though it is the standard of care, the current approach is fundamentally dependent on staffing, 
expertise, and alertness of human workers. A significant and proven problem with this approach is 
that it is naturally inefficient to use humans to check low-probability problems by computers and 
other humans. It is ineffective because many problems frequently go undetected. It is inconsistent 
because human workers have different levels of expertise and different understandings of the work 
performed and of elements required for quality and safe treatments. It is very costly by accounting for 
approximately 50% of workers’ effort in RT. Ultimately, it is unsustainable with the recent 
advanced technologies, including IMRT (Intensity-Modulated Radiation Therapy), IGRT (Image-
Guided Radiation Therapy), and SBRT (Stereotactic Body Radiation Therapy), because 
thousands more parameters and images need to be processed and checked than with previous 
3DCRT (3D Conformal Radiation Therapy) methods.

On the other hand, in the past 10 years, RT departments have evolved from paper-based to completely 
computer-based and paperless treatment management. As shown in Figure 2, dedicated Treatment 
Planning Systems (TPS) are universally used. Dedicated Treatment Management Systems (TMS) 
are now managing all aspects of the patient RT treatments, including patients’ electronic medical 
records (EMR). Treatment delivery machines (TDS) have also become very sophisticated with 
onboard CT (Computed Tomography) scanners, controlled by multiple computers and fully integrated 
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dedicated Workflow Management Systems (WMS) and Picture Archiving and Communication Systems 
(PACS) to store patient image data. Not yet expert systems, these computer systems have been designed 
only to serve, record, and track data (and documents) in electronic format and to retrofit the 
traditional workflow. They have indeed provided the foundation for a paradigm change to expert 
systems that can be created to manage and ensure the safety and quality using electronic data 
stored in these existing computer systems. As outlined above, the traditional way (relying on 
humans to check data in the computers) has many deficiencies and is ready for improvement.

3.2 Context
The goals of this study are to develop, implementation, and evaluate the patient chart check tools 

and algorithms for automatic detection of errors, inconsistencies, and issues in the patient charts. This 
study was designed to cover the cancer patients who received external beam radiation therapy 
treatments in the departments of radiation oncology.

3.3 Settings
Modern radiation oncology departments that are equipped with the industrial standard treatment 

management systems (ARIA by Varian Medical System, or MOSAIQ by Elekta), treatment planning 
systems (Eclipse by Varian Medical System, Pinnacle by Philips). This study has been conducted mainly 
at the Department of Radiation Oncology, Washington University School of Medicine, the affiliated 
Barnes Jewish Hospital, and satellite hospitals under BJC (Barnes Jewish Hospital Care).

3.4 Participants
The target users of the to-be-developed automated patient chart check tools and algorithms are the 

medical physicists and the radiation therapy dosimetrists (the treatment planners). Therefore, the 
participants of this study are the medical physicists and the dosimetrists, not the actual patients.

3.5 Incidence and prevalence
The focus of this study is to automatically detect errors, inconsistencies, and potential issues in 

the patients’ charts using software tools and novel algorithms. There are many types of potential 
errors during radiation therapy treatments. Some errors are very severe but very rare, for example, 
treating a wrong patient and treatment of the patient with a wrong treatment plan. Other errors 
happen frequently but are associated with minimal risks, for example, an incorrect dose rate chosen for 
the treatment beam.

Inconsistencies are referring to the situations that same piece of data or information appears 
inconsistent at different places. Inconsistencies in the patients’ charts could also take many 
different forms. They are commonly caused by a piece of data that was updated at some places 
or in some documents but not updated at other places or in other documents. They are not 
necessarily errors, because not all the inconsistent values will drive the patient treatment for the next 
step. However, the inconsistent data or documents raise questions and cause confusion about which 
values are the final and correct ones.

Issues are like inconsistencies but refer to the discrepancies between the data in the patient chart and 
the common requirement of clinical practice or clinical workflow. For example, patient treatment 
documents should be ready to go 1 day prior to patient’s first treatment fraction, because delayed 
document preparation and approval could cause other delays in the downstream.

At our RT department, the severe, high-risk, and mid-low- risk errors in both treatments 
and quality control (QC) steps are 0.55%, 6%, and 53% per patient, respectively, according 
to the reported clinical events. There is no quantitative estimation about the inconsistencies and the 
issues, because they happen too often to be recorded. A rough estimation among a small 
number of patients indicated that the inconsistencies and issues happen at >200% per patient.

Quality of care often has completely different definitions in various healthcare fields. In RT, quality 
can be defined as minimized variation in standard care delivery. In this study, we will further 
limit the definition as the correct and efficient completion of the safety and quality check tasks and the 
minimization of errors, both of which were shown to correlate to the treatment outcomes.
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4 Methods
4.1 Introduction

In this study, we developed an intelligent computer system, EcCk (Electronic Chart Checking). Its 
purpose is to automatically check and analyze patient data in clinical computer systems and to report 
any safety risks and quality issues by detecting errors, inconsistencies, and variations based on 
medical knowledge and clinical workflow requirements. The clinical goals are to improve the accuracy, 
efficiency, and consistency in error detection and quality control and indirectly to improve the treatment 
qualities and clinical outcomes.

Not all errors, inconsistencies, and potential tissues are detectable in the patient's chart. 
Estimated according to the reported clinical events, our EcCk prototype tools could only detect ~40% of 
clinical errors at the beginning of this R01 grant. The specific aim 2 of this grant was designed to expand 
the automated chart checking coverage to detect new and advanced errors/issues that were not 
supported previously. However, the expanded error detection coverage is still limited within the 
errors and issues that are detectable in patients’ data and documents that are directly accessible from 
the clinical computer systems. The items checked by EcCk software tools are listed in the Table 1. 
Table 1: The list of items checked by the EcCk software tools and novel algorithms developed in this R01 
grant. These items are supported according to the most important and frequent errors observed by the 
previously reported events and FMEA studies.

Data What is checked?
Basic Patient name and ID, consistent prescription names among TMS, TPS, and WMS.
Prescription Treatment prescriptions consistent among TMS, TPS, WMS, and Approved.
Patient setup Patient setup configured and approved in TMS. Consistent among TMS, plan, 

and simulation.
Treatment 
plan

All beams, control points parameters, beam name and identifier, machine, tolerance 
table, isocenter, weight point, MU (Monitor Unit) calculation, and additional 
configuration in TMS.

Treatment 
calendar

Treatment fractions configured and scheduled. Consistent with prescription. 
Treatment beams assigned into fractions according to the treatment prescription.

Image 
guidance

Uses of setup beams, beam orientation, and field size; setup of reference images 
and parameters; schedule per treatment sites and machines

Patient 
documents

Required documents completed correctly per treatment sites and modalities. 
Approved. Consistent with the treatment plan. Required QA completed. Result 
acceptable. 

4.2 Specific aims and methods
4.2.1 SA1 – Automate and enhance the automatic chart checking software tools

The goal of SA1 was to enhance and automate the automatic chart checking software tools and 
algorithms, deploy and test them clinically, and evaluate the implementation and efficiency. For SA1, we 
have completed the following tasks: 

• Patient master database was developed to facilitate automation.
• EcCk was enhanced to generate the plots and check multiple treatment record trends: couch table 

positions and SSD daily or weekly measurements.
• Weekly chart checking was automated, then improved to support ARIA [30], Viewray, and proton 

treatments and to integrate the Automatic dynamic MLC log QA results.
• Automatic weekly chart check programs were developed for UCLA cancer center and tested [30]. 

Most modules of weekly chart check programs of EcCk for MOSAIQ have been re-designed 
and re-developed to support ARIA.

• A set of client/server programs [34] was developed to seamlessly extract Eclipse plan, dose, and

P a g e  5 | 15



structures data so to allow remote access of Eclipse planning data.
• ECCK was improved to integrate ADQ, iCheck, Chart Check Assignment, and dynalog QA tools.
• Viewray-specific EcCk programs were developed to support the new MRI-LINAC radiation 

therapy treatment modality [9, 18, 21].
• A new feature was developed in EcCk to generate an electronic dashboard for new patients. This 

web-based electronic and auto-updating dashboard allows automated detection of clinical 
workflow issues (incorrect or late status of each clinical workflow steps, missing required 
documentations, etc.). This work is helping reduce the occurrences of workflow errors and 
communication issues, to avoid unnecessary patient delays and to avoid rushed (potentially 
unsafe) finishing of clinical work items.

• A stand-alone program was developed to semi-automatically and randomly assign patient weekly 
chart check tasks to individual medical physicists and to track the weekly chart checking status 
[22].

• Automatic and manual checklists were developed per treatment modality and disease sites.
• The testing datasets were developed.

4.2.2 SA2 – Develop novel algorithms and methods to improve error detection coverage
The goal of SA2 was to expand the automatic chart checking coverage by developing novel rules and 

novel algorithms to check the patient’s data, documents and images that were previously not supported. 
Within the scope of SA2: 

• We symmetrically analyzed the RT plan parameters per treatment disease site and treatment 
modalities for all the treatment plans of the past 8 years [29]. The goal was to understand the 
common treatment plan data statistics (e.g., MU/cGy ratio, numbers of beams and segments) to 
quantitatively define the common sense-based rules to guide manual or automatic checks. Two 
methods (Median absolute deviation, Error-leveling) were developed to generate error statistical 
data automatically.

• A novel method was developed to quickly compute the 3D fluence volume [4] of the patients’ 
specific treatment plans so as to automate and expediate the patients’ specific quality assurance.

• Workflow error detections were implemented as an electronic and auto-updating new patient 
whiteboard for tracking patient treatment preparation workflow steps and detecting delays.

• A novel algorithm was developed to automatically enhance the X-ray image contrast [33].
• A novel machine learning algorithm was developed to automatically detect and confirm the 

patient treatment site, orientation in the daily treatment setup X-ray images [31].
• EcCk was expended to check patient daily 2D-2D setup images [32].
• An algorithm was developed, given a new treatment plan, to predict treatment delivery time for 

Viewray MR-IGRT patients [2]. This algorithm was necessary for patient treatment scheduling 
and was useful as an indicator to assess the treatment plan complexity.

• The prototype APDV (Automatic Pre-Delivery Verification) program [37] was developed to 
automatically check the integrity and accuracy of the treatment plan parameter just prior to 
radiation treatment delivery.

• A machine learning algorithm was developed to automatically detect potential errors in the 
prescription order data [13]. The algorithm used the Bayesian models (probabilistic graphic 
model) to the potential errors as the statistical outliers.

• A knowledge-based method was developed to capture the data variable dependencies as the 
trained decision trees used the trained tree to detect irregular data variable combinations [51]. In 
this way, the potential prescription errors, as the irregular prescriptions, could be identified.

• A knowledge-based error detection method (association rule) was developed to detect treatment 
prescription errors, patient setup errors, and treatment plan errors [53, 60]. Compared with 
two previously developed machine learning error detection methods (Bayesian network method
[13] and the isolated forest method [51]), the association rule method is capable 1) of 
automatically
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mining the clinical and physics knowledge from the clinical dataset in formats that are readable and 
understandable to human users, 2) presenting the detected error in ways that are understandable to 
human users, 3) integrating with manually defined error detection rules, and 4) naturally 
supporting missing values in the clinical data  to detect errors (also missing values). 

• A new stand-alone program has been developed based on EcCk programs to automatically 
generate a web-based report of patient treatment data changes in the treatment management 
system. This daily report is generated automatically every early morning and is used clinically by the 
treatment machine therapists to verify the patient treatment plan data and to identify unintended 
or incorrect changes in the treatment plan data.

• A novel image noise reduction algorithm was developed to maximize the image noise reduction while 
preserving the image features [6]. This algorithm was developed to improve the accuracy of automated 
checks of patient daily treatment image guidance.

• A novel algorithm was developed to correct MRI image intensity inhomogeneity [36]. This work is to 
improve the accuracy of automated verification of patient daily treatment image guidance.

• A novel and practical method [4] was developed to quantitatively assess the risks and robustness of RT 
plans for the most critical organs (spinal cord, brainstem, optic chiasm, optic nerves) using geometrical 
transform of the official clinical treatment plan dose volumes (per radiation beam).

• A method was developed to assess RT plan quality based on historical knowledge and the sum of 
weighted distance (SWD, the weighted distance from the organs-at-risk to the treatment target).

• A generic patient documentation processing procedure was developed.
• A prototype of automated verification of patient treatment image guidance was developed based on 

the previously developed automated image contrast enhancement, automated treatment site 
identification using machine learning.

• An artificial neural network machine learning method [14] was developed to predict the RT plan dose 
distribution then compute the plan quality so as to predict the optimal tumor target radiation 
coverage, given the contours of the tumor target and the normal organs. In this way, the treatment plan 
quality could be predicted prior to the time that the treatment plan is prepared, and the quality of 
the already prepared treatment plan could be quality assured against the previous similar cases.

• The same artificial neural network was applied to compare and evaluate the treatment plan 
qualities between the older and new MRI-RT machines [16].

• A novel method was developed by the PI to quality check the image fusion used by RT treatment 
planning based on automatic detection of landmark pairs in the image pairs [9].

• A novel deep-learning method [12] was developed to automatically detect large number of 
landmark pairs in the lung CT images so as to estimate lung tumor motion and quality check the 
motion management for lung cancer patients.

• A novel deep-learning method [11] was developed to automatically segment the normal organs in the 
abdominal MR images for abdominal and pancreas cancer patients receiving the MRI-guided RT. The 
purpose is 1) to speed up organ segmentation so to minimize the patient total treatment time and 2) to 
ensure the manual organ segmentation.

• A novel hierarchical procedure was developed to automatically segment the whole skeleton [5] in 
patients’ CT images. The purpose was to enable automated verification and patient daily 3D-3D image 
guidance and to allow automated verification of 3D image fusion based on bony structures.

4.2.3 Support new sites, new radiation therapy treatment machine and clinical software system 
vendors, and new treatment systems 

The goal was to expand the automatic chart checking efforts from the main hospital to smaller-scale 
satellite hospitals and to cover additional and new clinical software vendors and new radiation therapy 
treatment machines and treatment planning systems. Within the scope of SA3: 

• The EcCk system was enhanced to support the satellite hospitals by integrating the multiple
database systems used by each satellite hospital.
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• Algorithms were developed to process patient documents in Microsoft word files in docx format 
to support automated checks of patient documents and to support different patients’ 
documentation formats from different hospitals.

• Algorithms were developed to process patient documents in PDF format using OCR to support 
checks of patient treatment plan documents for UCLA.

• A software tool, a  chart checking timer, was developed with clinical database integration to 
support quantitative measurement of improvements of working efficiency by using the 
automated chart check programs. The tool was then used to compare the medical physicist work 
efficiency between using and not using the semi-automated chart checking tools.

• New EcCk rules were developed to support the new collaboration site – Provision Proton Center 
at Knoxville, TN, for proton treatments, and for UCLA.

• The treatment management system was updated from MOSIAQ to ARIA in cloud at the 
PI’s department. The EcCk system was updated to support the new ARIA in cloud.

• Most of the EcCk prototype features and functions, implemented and tested in MATLAB, have 
been ported to the new ARIA and Eclipse API and re-implemented into C# to obtain better user 
interface and tighter integration with ARIA and Eclipse.

4.3 Data Sources/Collection
Patient’s data and documents analyzed for error detection were directly obtained from the clinical 

computer systems–treatment management systems ARIA and MOSAIQ, treatment management 
systems PINNACLE and ECLIPSE, and WUSTL in-house radiation oncology workflow management 
system DosBoard. Data collection and analysis were performed as per institutional IRB approval.

The queried and analyzed patient data and documents are patient ID (ID only, no other PHI), patient 
treatment planning data, prescription (site name, PTV name, total dose, number of fraction, dose per 
fraction), radiation beam parameters (beam MU, gantry, collimator, field sizes, MLC leaf positions, 
number of segments, number of beams, energy, machine, beam type, bolus, wedge), patient setup 
parameters (orientation, accessory devices), data in the department MD order database, patient setup 
parameters (patient orientation, use of treatment accessories), PTV (name, margin, sequential or 
concurrent boost), daily setup beam requirements (schedule of daily and weekly cone beam CT, 2D portal 
images), treatment plan PDF document, treatment schedule, treatment history records (dates, treatment 
machine and beam parameters, manual overrides), quality assurance document (status of pass or fail, 
and dates), chart checking history (who and when), and flags of data approval and overrides (who, 
when, and what are approved and overridden).

4.4 Interventions
This study is a retrospective patient chart checking tool development study. During this study, 

patients’ data, documents, and images were retrospectively analyzed after the patients’ treatments have 
been concluded for supporting the software tool development tasks. The errors found during the 
retrospective analysis were not be used back to support patient clinical treatment decision and did not 
affect or change the patient treatment plan and treatment course.

Results of this study, for example, the rules to automatically check the patients’ chart, were latterly 
implemented in the clinical physics software tools that were used in the clinical workflow as secondary 
physics tools.

4.5 Measures
The results of software tool implementations were measured on whether the designed features and 

functions were implemented correctly and complementation, for example, whether the previously 
independent multiple software programs were integrated into a single EcCk packages as designed in SA1, 
and whether EcCk automation was implemented to carry out the patient chart checking tasks 
automatically or semi-automatically, as designed. 

The results of the developed novel error detection algorithms were measured qualitatively and 
scientifically. For example, the error detection sensitivity and specificity of the Bayesian network-based 
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error detection algorithm (Chang and Yang, Development and validation of a Bayesian network method 
to detect external beam radiation therapy physician order errors, International Journal of Radiation 
Oncology*Biology*Physics, 2019) were quantitatively evaluated on both true and simulation errors. 
Similarity, other novel algorithms developed by R01 were also quantitively evaluated but in their own 
different ways.

4.6 Limitations
Not all errors in the radiation treatment patient treatments could be detected automatically. The 

scope of automated error detection is limited by a few important factors:
• Limited by the accessibility of the patients’ chart and data. Patients’ data and documents within

the radiation oncology department computer systems are relatively accessible, because the
radiation oncology departments are very well computerized. Additional patient data, for example,
the patients’ chemotherapy treatment schedule and treatment prescription, are available not in
the RO computer systems but in the hospital EMR system. Inaccessibility to such critical patient
prescription and schedule data limits the accuracy for detecting radiation therapy prescription
errors, because RT and chemotherapy prescriptions are often interdependent.

• Limited by the readability of patients’ data and documents. Patient’s data and documents are
often unreadable, for example, the optic scanned PDF documents. Many readable data and
documents are not structured, and the data elements could be reliably read then processed by
current computer programs and algorithms.

• Limited by the intelligence of the software implementation and the error detection algorithms.
The simple errors, for example, the inconsistencies of a same data elements at different data tables
in the database, could be easily detected based on pre-defined rules. The advanced errors, for
example, the inconsistencies of the treatment prescription of a patient, compared to the previous
similar patients’ prescriptions, are much more difficult to detect due to the variety and diversity
of the errors and could be detected by simple rules.

Not all radiation therapy (RT) treatment planning systems (TPS) are supported. This study only 
supports the Varian Eclipse TPS and Phillips PINNACLE TPS, because the PI’s department has only these 
two TPS systems. Though these two major systems cover >90% of all RO departments, newer 
and specialized TPS systems (e.g., TomoTherapy, RaySearch, CyberKnife) are not 
supported. However, the principle of the automated chart checking software tools and the 
error detection algorithms are all applicable to the uncovered TPS systems.

Not all RT treatment modalities are supported. This study focuses on external beam treatments, 
which accounts for >80% of all RT cancer patients. Other RT treatment modalities (e.g., brachytherapy, 
GammKnife, TomoTherapy, proton therapy, and radiopharmaceuticals) are not 
currently supported. However, the principle of the automated chart checking software 
tools and the error detection algorithms are very applicable to the supported RT treatment 
modalities.

5 Results
5.1 Principal Findings

• It is practical to develop and implement the automated and semi-automated electronic chart 
check software tools for the modern radiation oncology departments.

• The chart checking software tools can effectively detect simple errors, inconsistencies, and issues 
based on pre-defined rules.

• The automated electronic chart check software tools and algorithms are evidently useful in the 
clinical workflow in the RO departments. They could indirectly improve the work efficiencies by 
the medical physicists and radiation therapy dosimetrist. They might be useful to indirectly 
reduce the overall cost of patient care by improving the worker’s efficiency.

• The software tools, based on data, documentation and image processing algorithms, and pre-
defined common rules could be adapted to support different clinical computer and database 
systems and combinations and to support radiation oncology of large or smaller scales.
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• Novel machine learning algorithms could be developed and applied for detecting advanced errors 
after the machine learning models are trained using a relatively large amount of patient data. Such 
machine learning-based algorithms are powerful for processing high-dimensional data (e.g., the 
image data) that the conventional rule-based error detection algorithms cannot handle.

5.2 Outcomes
Outcomes of this R01 are 1) the implemented and enhanced patients’ chart checking tools that were 

prototyped and then clinically deployed (please see the specific accomplishments in 4.2.1 to 4.2.3), 2) the 
novel image and data processing algorithms to detect certain types of advanced errors that could not 
be detected based on simple rules, and 3) common applicable tools and procedures for processing data 
and document.

5.3 Discussion
Clinical computation infrastructures keep changing. At the PI’s department, the treatment 

management system, which was the main source of patient data and documents, was updated from 
MOSAIQ to the cloud-based ARIA. All data tables and documents were changed accordingly. The 
clinical workflow was also changed significantly. The EcCk prototype had to be updated to support 
the new database and documents. Many previously implemented EcCk rules and features were 
not applicable anymore. However, the principle, the pre-defined rules (not the implementation of the 
rules), and the novel machine learning algorithms, data/image/document processing algorithm were 
still very applicable.

Our EcCk tools do very well for detecting simple errors/inconsistencies/issues based on pre-defined 
rules. However, detecting errors based on manually defined rules is limited. First, the rules are 
depended on the clinical workflow and department-specific requirements; therefore, they are not 
always applicable to different institutions, because the clinical workflows are very heterogeneous 
across the nation. To support different institutions, the rules need to be reviewed, revised, and then 
re-implemented in the software tools. We developed the rule specifications. Our rules were defined in 
XML files and therefore could easily modified to support new institutions. However, the PI had to be 
involved to transcribe the department-specific workflow requirements into the rules definition in the 
XML configuration files. In the future, it may be possible to modify the clinical workflow to allow 
more automated patient chart checking. In fact, many clinical workflow steps need to be upgraded to 
suit the updated clinical computer systems and the increasing integration of patient data and documents 
in electronic formats.

It is still difficult to automatically check the patients’ documents. Both the Microsoft word file format 
and PDF file format are commonly used in the clinic, and either format is suitable for 
automated documentation processing, data extraction, and data checking. In the future, the clinical 
Word documents should be redesigned so that the files can be easily converted and parsed by 
computer programs. PDF files are generated by different clinical computers from different vendors to 
be the read-only patient records. In the future work, vendors should consider inclusion of the patients’ 
data elements and data dictionaries in the PDF file header, so that the data could be readily processed by 
other computer programs to extract and check the embedded data elements. Machine learning 
and deep learning methods could also be useful for extracting information from patients’ documents.

The whole healthcare industry is moving toward the machine learning and AI direction. Machine 
learning approaches are very suitable for detecting the advanced errors that were currently impossible 
for rule-based checks to detect, for example, to automatically evaluate the patients’ plan quality against 
the population average of similar cases. In years 4 and 5, we have been working extensively on 
developing knowledge-based novel algorithms, including machine learning and deep-learning 
algorithms, to detect advanced errors and issues, for example, organ labeling issues and plan quality 
issues. Even though we had successfully published papers for the new machine learning error detection 
algorithms, our results were rather sporadic and were only enough to cover a few advanced errors, 
for example, prescription errors. In the future, a more complete study is required to 
systematically investigate using machine learning methods for detecting advanced errors in RT. A unified 
machine learning solution might be required to integrate the conventional machine learning methods 
(e.g., Bayesian network, decision trees, association rules) and deep-learning methods (suitable for 
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processing large amount of data and image data) so that the error detection results could be 
comprehensive and human understandable.

5.4 Conclusions
A software package and novel error detection algorithms were developed in this study to check errors 

in radiation therapy patients’ charts automatically and comprehensively. These software programs and 
algorithms were clinically tested and evaluated at larger and smaller RT departments. They could 
automatically detect ~60% of clinical errors, assist in manual error detection of the remaining 40% 
errors, and potentially prevent the most severe errors in real time. They could significantly improve 
patient safety and quality control, especially at smaller RT departments with fewer human experts. 

5.5 Significance and implications
The significance of this study is to demonstrate that automated patient chart check software tools can 

be developed and clinically deployed to aid human workers for automatic detection of potential errors, 
important inconsistencies, and potential issues. This study has also demonstrated that such 
computerized chart checking approach could be adopted by different RT departments of large or 
small scales. Computer software tools are suitable and effective for error detection, because most 
patients’ data, documents, and images are always in the computer systems. In comparison, human 
workers might not be well suited for the repetitive error detection tasks.

The main implication of the automated error detection software tools is to improve patient safety via 
improving the error detection accuracy and efficiency and, therefore, reducing the errors passing 
through the quality assurance steps in the clinical workflow. The secondary implication is the 
potential for improving RT workers’ efficiency and the potential of reducing overall cost of patient care 
because of the improved RT worker efficiency.

This study does not imply that the human RT workers could be entirely released from the manual 
error detection/quality assurance tasks, though. In fact, this study has confirmed the computerized error 
detection is suitable for detecting simple errors, for example, the inconsistencies of the same data element 
at different places of the database. The advanced errors that require human workers to comprehensively 
apply the clinical knowledge and to connect many different components of the patient’s data and clinical 
considerations are very difficult to automatically detect. Therefore, the computerized error detection 
should be applied to help human workers on the simple tasks and allow the human workers to focus on 
advanced tasks.
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6.3 Electronic Resources
None

6.4 Products
• EcCk– the main physics chart checking tool. It is our main platform for developing, testing and 

evaluating new chart checking functions and new algorithms. As a product, it supports automatic 
and semi-automatic new start check, weekly checks and other automated chart checking features, 
and serves a central hub to access all other physics quality assurance software tools and workflow 
tools.

• VRART – the Viewray-specific version of EcCk. It was designed for checking Viewray MRI-RT 
treatment plans that are very different from the conventional RT plans prepared by the common 
Eclipse or PINNACLE TPS systems. This tool is critical for expediting physics quality assurance 
efforts in the online, MRI-guided treatment adaptation sessions [9]. This tool was 
officially licensed to Viewray, Inc., and then was supplied by Viewray to all other Viewray 
installation sites.

• Software library to access and process data from Pinnacle TPS server (copyrighted)
• Quality assurance and plan veto software tool (copyrighted)
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