[image: image8.png]

DRAFT

Web Crawl Module
System Design Document
Version 1.0
January 24, 2006
Document Change Record

	Version Number
	Date
	Description

	1.0
	01/24/2006
	Initial document

TABLE OF CONTENTS

11.
Introduction

1.1
Document Overview
1
1.2
Reference documents
1
2.
System Architecture
2
2.1
Domain MODEL
2
2.2
Overview of Content Manager
3
2.3
Design Model
4
2.4
Major Design Features
5
2.5
Database Design
6
3.
Components
9
3.1
Content Manager Extensions
9
3.2
Crawl Initializer
10
3.3
Crawler
10
3.4
Results Propagation
12
4.
Design to Requirements traceability
13
Appendix A – acronym List
14
APPENDIX B – DATABASE
15
B.1
Database Design Policy
15
B.2
Entity Relationship Diagrams
16
B.3
Data Dictionaries
18

1. Introduction

The System Design Document (SDD) describes the design decisions, architectural design, and the detailed design needed to implement the software. The SDD is used as the basis for implementing the software. It provides the acquirer visibility into the design and provides information needed for software support.
The Clearinghouse System is comprised of, among others, a content management system and multiple projects, each of which provides to the public, through a site on the World Wide Web, access to portions of the contained content. The QualityTools project is a component of the Clearinghouse System. Among its features is a facility that affords users the ability to search online resources for topics of interest. Because this is an interactive activity, speed of response is important. The Web Crawl module represents an initiative to support searching by contributing to that response speed.
1.1 Document Overview
This System Design Document defines the strategies necessary to accomplish the design activities associated with the Web Crawl module. The remaining System Design Document sections are organized as follows:

· Section 2. System Architecture: Describes and overview of the system, the conceptual and architectural design, interfaces and the various environments that will be used throughout the development lifecycle.

· Section 3. Components: Identifies and describes each component broken down into its parts that are described in detail.
· Section 4. Design to Requirements Traceability: Summarizes traceability from each design element in this plan to the requirements it addresses, as prescribed by the Web Crawl module Software Requirements Document (SRD).
· Appendix A. Acronym List: Defines the acronyms to be used on the project.

· Appendix B. Database: Describes database-wide design decisions about the database's behavioral design and other decisions affecting further design of the database broken down into its parts that are described in detail.
1.2 Reference documents
For additional project specific information, refer to the following document:

· Web Crawl module Software Requirements Document (SRD)

2. System Architecture

2.1 Domain MODEL

2.1.1
Background
The Clearinghouse System, and the QualityTools project in particular, provide to their users a search mechanism which enables them to search web documents for text sequences or concepts of interest. Sequential access of a large number of web pages can be time consuming. Searches can be speeded if the domain to be searched is organized and stored locally. The purpose of the Web Crawl module is to conduct this preprocessing in order to make interactive searches as responsive as practical.

Figure 2.1-1 Web Crawl Background

[image: image1.jpg]Web Server

E! Crawl

Firewall

N
3
S

Database

Firewall

Workstation

User

2.1.2
Domain Concepts
2.1.2.1
Web Crawling is a mechanism that supports searching by examining a specified domain in advance of requested searches and indexing the content found in order to speed subsequent searches. It consists of automatically visiting a sequence of web pages, parsing and interpreting their contents and recording information about those contents in an organized manner.
2.1.2.2
A Crawl Point is a web page at which a web crawling excursion is to begin. If the page contains links, the excursion may visit the pages represented by those links as well.

2.1.2.3
A Root String is the first portion of the URL that defines a crawl point. The links followed by the crawling process from a specific crawl point are limited to those beginning with the root string of that crawl point.
2.1.2.4
Crawl Depth is the number of pages in the chain of links between a crawl point and the page currently being examined. A Depth Limit is imposed on a web crawling excursion in order to restrict the extent of the domain to be crawled to a practical size.

2.1.2.5
An Exclude URL is the address of a web page that is to be excluded from excursions, usually because its content, though superficially related, is not truly relevant to the domain of interest.

2.1.2.6
Indexing is the process of identifying tokens within content that might match, in whole or in part, the value specified in future search strings and storing the tokens along with the pages on which they reside in a form indexed for rapid retrieval. Most database management systems provide a mechanism for accomplishing indexing.
2.2 Overview of Content Manager

Together with the doc_library database, Content Manager (CM) is the core of the Clearinghouse System. It is a client based VB6 and VB.NET application that serves as an interactive user interface to the doc_library database. Its primary function is to support the creation and management of documents. In this context, a document is defined as a structured collection of components which identify, describe and provide relevant information about a piece of communication of any kind, published or not, and carried on virtually any kind of media.

Content developers use the CM tool to enter, view and edit the individual components of documents. These components are referred to as fields. They include, among other things, free form text descriptions such as summaries, precise values such as dates and volume numbers, items chosen from restricted lists such as concepts or citations and references to members of collections, such as sponsoring organizations, which have multiple descriptive attributes of their own.

CM also provides the means to manage the content of lists from which field values are picked such as controlled vocabulary and the information associated with entities such as organizations, to initiate citations and create crawl points and to edit directly some portions of Web sites such as banners.

Documents are associated with projects. Project managers can use CM to define the fields that comprise a document, to make assignments of documents to content developers and indexers, to monitor the status and progress of content development of individual documents, to approve the results of that progress and to manage the cycle of verification in which the originator of the work to which a document refers is asked to review and approve that document.

2.3 Design Model
The following class diagram represents the foregoing concepts in more formal and abstract form:
Figure 2.2-1 Web Crawl Class Diagram

[image: image2.jpg]Exclude URL |

o
T
Dopth fimit has
avoids |
1 |
|
1 1| restis |
Excursion e
Craw point
stars at
1 1
T folows " Link N =

contains

Website Root string

ideniifes.

URL

In this model, an excursion is a sequence of web pages that the Web Crawler accesses. A document may have associated with it a crawl point, a depth limit and, optionally, some exclude URL’s. The crawl point serves as a starting point for an excursion; the depth limit restricts it. The excursion avoids exclude URL’s. The crawl point is a URL, as is an exclude URL. A URL points to a web page. A web page may contain links, which are also URL’s. An excursion follows any links that have the same root string as the crawl point. A root string is part of a URL; it identifies a Web site. A Web site contains the web pages that become included in the excursion.
2.4 Major Design Features
2.4.1 User Interface
The requisite user interface for the Web Crawl module is limited to the designation and management of crawl points, exclude URL’s and depth limits. All three of these entities are closely related to the concept of a document, and, in fact, specific to individual documents. Accordingly, the user is served most effectively by extending the existing Content Manager application to provide this functionality. Inasmuch as this choice is also the most economical, the decision becomes obvious.
2.4.2 Databases
The module will employ two different databases in order to attain the flexibility needed to ensure no interference with concurrent interactive tasks, in accordance with Requirement number 9. Data entered via Content Manager will be stored in the existing doc_library database in order to remain most conveniently accessible to interactive management. During actual web crawling operation, however, transient data and crawling results will be stored in a dedicated WebCrawl database. The latter will use MS SQL Server 2005, Express Edition, as the DBMS. This selection is the lowest cost option and is consistent with all of the other parts of the system. The database can be configured either on the same platform as the doc_library database or on an entirely different one. At the conclusion of crawling, data resulting from the crawl will be ported from WebCrawl to the doc_library database on the content development server, and on to the production servers as well.
2.4.3 Components
Implementation of the module will take the form of four distinct components. One will effect the extensions to Content Manager aimed at accommodating the data entry related to web crawling. It is the realization of the use case package: Manage Crawling Parameters. The other three components require no user interface; they will be invoked by the system scheduler and run as background processes. Together they realize the Crawl Web use case. This architecture reflects a strategy of isolation of data entry from automatic processing and of encapsulation of a process capable of operating in parallel.
Of the three components in the second group, one initializes the environment for the crawler, using the data entered previously through Content Manager. The second implements the functionality of web crawling proper. The crawler component will incorporate features to protect against overlap. This design feature will permit multiple instances of the crawler to operate simultaneously in order to speed up what might otherwise be an excessively time consuming process. The initializer will utilize the Microsoft Message Queue facility (MSMQ) to deliver the information it collects to the crawlers in a way that supports the desired isolation.

The final component will move the collected results of the multiple crawlers from the WebCrawl database to the doc_library databases on the content development and production servers.
2.5 Database Design

The dedicated WebCrawl database contains five tables. The crawler uses two of these to hold transient data that maintain its context: each instance of the crawler records the message queue on which it is working in the active_queue table. Doing so permits multiple instances of the crawler to operate simultaneously without duplicating each other’s efforts. The crawled_pages table contains a list of web pages that the crawler has already visited. As it crawls each page, it adds the reference to this table. When it finds links on a web page, it adds them to the message queue, provided that they do not appear in either the doc_crawl_exclude_url table or the crawled_pages table and that the excursion is not already at its maximum depth. Following this procedure precludes becoming trapped in a circular chain of web page references and, as such, is responsive to Requirement number 10.
The crawler stores its results in two tables, which are replicated to the doc_library database upon completion of the crawling session. The doc_crawl_page table contains the master list of pages that have been successfully scanned as well as the full contents of those pages. The crawl_page_meta table contains their metatags. A distinct table is needed for the metatags because there may be many of them on a single web page. A static table, crawl_page_type, serves as documentation and as a foreign key reference for the doc_crawl_page table. It also appears in the doc_library database.
In addition to the three tables just mentioned that will appear in both databases, the design encompasses three more new tables in the existing doc_library database: the crawl_point_table contains a list of crawl points, together with their root strings, depth limits and authentication data. This set of information supports responsiveness to Requirement numbers 2, 3 and 5. The doc_crawl_exclude_url table lists web pages for the crawler to avoid because they are already known to be of no interest. The doc_field_crawl_point table relates a crawl_point to a specific document and a field. In the doc_library database, an object associated with a document is represented in the field table, with a reference to the field_type table indicating the nature of the object. The fact of the existence of a set of crawl points associated with a document thus becomes a row in the field table. The field table and the crawl_point table stand in a master – detail relationship to each other, with the doc_field_crawl_point table serving as the link.

The following illustration presents an entity relationship diagram (ERD) of the WebCrawl database and the relevant portion of the doc_library database. The diagram is simplified by the omission of that part of the doc_library database that has no bearing on the Web Crawl module. The omitted portion constitutes the bulk of that database. Further, the three tables which will be present in both databases are shown only once in the diagram, in the WebCrawl database portion. Finally, the metacolumns, which appear by policy in all tables, are omitted from this diagram, also for simplicity.
Figure 2.4-1 Web Crawl Simplified ERD
[image: image3.jpg]Web Crawl Module Databases

Doc_library Database WebCrawl Database
Tables outiined in red are newly added to doc_library Copies of tables outlined in blue also appear in the

doc_library database
Uncolored tables are used to control the crawl process

feld doc_field_crawl_point crawl_page_type
PK | field id PK crawl_page_type_id
——
feld_status_id FK2 | doc id name_str
FK1 | field_type_id FK3 | field_id
code_str FK1 | crawl_point id
name_str doc_crawl_page
delimit_str .
parent_id doc_crawl_page.
level_id -
generated_fl doc_id
gen_text_proc_nm crawl_page_url
source_field_id U1 | name._str LA title_str
mult_select_f desoription_str updated_f
sort_id - PK [crawl_point FK1 | crawl_page_type_id
header_tt crawl_fle
footer_tx crawl_point_url page_ext
— & root_str
oc crawl_auth_type_id T
PK |doc id crawl_id_str
crawl_pw_str crawl_page_meta
doc_nbr append_str
locked_fl page_depth_int FK1 | doc_crawl_page_id
update_pending_fl max_pages_int crawl_page_meta_id
FK1 | doc_status_id active_fl pe——
published_dt e
doc_status 4
PK |doc_status_ia
doc_crawi_exclude_url crawled_pages
Ut [name_str active_queue
sort_seq PK | doc_crawl exclude url id PK | page_id
published_status_fl PK [queue id
visible_on_prep_fl exclude_url page_url
visible_on_prod_f FK1 | doc_id queue_nm doc_id

The left side of the diagram portrays the relevant portion of the existing doc_library database. The three tables outlined in red are newly added to support the Web Crawl module. The right side of the diagram shows the new WebCrawl database, including the three tables (outlined in blue) that are added to the doc_library database as well. Four tables, doc, doc_status, field and field_type already exist in the doc_library database. They appear in the diagram because they serve as foreign key references for the new doc_field_crawl_point table, which relates a collection of crawl points to a document and to the doc_crawl_exclude_url table, which lists web pages to avoid during crawling.
3. Components

3.1 Content Manager Extensions
This component consists of the extensions to the existing Content Manager application that address Requirement number 8, to provide a GUI to designate and manage crawl points, exclude URL’s and depth limits. It is the realization of the Use Case package: Manage Crawling Parameters. The following data entry panel will be added to the Document menu of Content Manager:
Figure 3.1-1 Crawl Point Data Entry Panel
[image: image4.png]' Content Manager 2 [Project = QualityTools]

Ele View Document Reports (o Window Help

b

DX B9@ ©

3 Crawl Point -—

Crawl Point.

Fields Craw Pairts
1=] [uRC Foot Active] .

g /7vww ahig, gov/consumer/art/ i ahig gov/consumer/ant 4

g/ ahig, gov/consumer/qualguidpel i ahiq gov/consumer 4

BEBBBBBEH

Add Updste Delte

This panel, as well as the rest of the Document menu, are enabled only after a specific document has been selected from the Document Navigator. It shows all crawl points that have already been established for the selected document. Three buttons at the bottom of the panel support the necessary data entry operations. Pressing the Add button brings up the following dialog box, which provides a template for the entry of all of the data associated with a crawl point. Alternatively, selecting one of the displayed crawl points and pressing the Update button brings up the same dialog box already populated with the data associated with the selected crawl point, so that that data may be modified. Selecting one of the displayed crawl points and pressing the Delete button results in deleting the selected crawl point. Finally, the Done button dismisses the panel.
Figure 3.1-2 Crawl Point Data Dialog Box
[image: image5.png]Crawl Point

v
Foot [
PogeDeph [2= MaimunPages [0

Userp [
Passwod [
ReenterPassword [

oK

The Maximum Pages box sets a limit on the number of pages that the crawler will access, starting from the subject crawl point. The Active checkbox can be used to disable a crawl point temporarily without discarding the information defining it.
3.2 Crawl Initializer

This component is a VB.NET application using stored procedures to access the databases and MSMQ to communicate with the subsequent component. It executes the following sequence of steps:
· In the WebCrawl database, truncates the active_queue and crawled_pages tables.
· In the doc_library database, reads the crawl_point table joined to the doc_field_crawl_point table and selects all active crawl points, grouped by document.
· For each document, creates one message queue and places on it all crawl points for that document.

3.3 Crawler

This component is a VB.NET application using stored procedures to access the databases and MSMQ to acquire information from the initializer. It executes the following sequence of steps:
· Scans the message queues established by the initializer.
· Compares queue names with those listed in the active_queue table in the WebCrawl database.
· Selects for its own operation the first message queue that is not already present in that table, and adds it to that table to prevent other instances of itself from working on the same queue.

· Enters a main loop.
· Deletes the message queue and exits.
Within the main loop, the crawler repeatedly executes the following sequence of steps as long as it finds any items on the message queue:

· Removes the next item from message queue.
· Accesses the indicated web page, using the authentication data associated with the crawl point, if necessary. This is responsive to Requirement number 5.
· If the page accessed is a redirection, determines whether it is among the pages to be excluded and whether the root string is matched. Returns to the beginning of the loop if either test fails. This is responsive to Requirement number 6.

· Determines the web page type.
· Parses the content of the page to identify any title, metatags and links that are present.
· Stores the page id, URL, page type, page title and content in the doc_crawl_page table in the WebCrawl database. Doing so at this point, together with the following step, satisfies Requirement number 7.
· Stores the metatags in the crawl_page_meta table in the WebCrawl database. Doing so at this point, together with the preceding step, satisfies Requirement number 7.
· Adds the page id to the crawled_pages table.

· If it is not already at the maximum depth for the crawl point, and if it has not already crawled the maximum number of web pages for the crawl point, compares any links that were found on the page whose URL’s begin with the root string to those in the crawled_page table in the WebCrawl database and to those in the doc_crawl_exclude_url table in the doc_library_database. These qualifications implement the restrictions imposed by Requirements 2, 3, 4, and 10.
· Adds to the message queue any such links that are not matched in either of those tables. Since the crawler continues executing until it has removed all items from the queue or crawled the maximum number of web pages, this addition satisfies Requirement number 1.
3.4 Results Propagation
This component is an MS DTS package. It executes the following sequence of steps three times:

It truncates the two results tables in the doc_library database on a server. It then copies to that database the new results from the WebCrawl database, which may be on a different server. Finally, it invokes full text indexing.
It operates with this sequence first on the content development server, then on the primary production server and lastly on the backup production server. Before operating on the primary production server, it redirects the public Web sites from that server to the backup production server. It reverses this redirection after completing the operation.
4. Design to Requirements traceability
The following table, reproduced from the Web Crawl Module Software Requirements Document (SRD), identifies the requirements established for the module:
Table 4-1: Requirements Summary

	Req ID
	Requirement Type
	Requirement Description

	1
	User
	Must crawl all paths

	2
	User
	Must visit only pages beginning with root string

	3
	User
	Must limit depth of crawling

	4
	User
	Must exclude unwanted pages

	5
	User
	Must accommodate authenticated sites

	6
	User
	Must follow qualified redirection

	7
	User
	Must recover from interruption without loss

	8
	User
	Must provide GUI to manage parameters

	9
	User
	Must not interfere with interactive tasks

	10
	System
	Must avoid infinite loops

Earlier sections of this document have identified individual instances of traceability of design to requirements in the context of describing specific elements of design. Traceability is summarized in the following table:

Table 4-2: Traceability Summary

	Requirement ID
	Design Component or Behavior

	1
	Crawler adds all links to message queue, after confirming eligibility

	2
	Crawler restricts links followed to those containing root string, stored in crawl_point table

	3
	Depth limit stored in crawl_point table & consulted before adding links to message queue

	4
	Unwanted pages stored in doc_crawl_exclude_url table & consulted before adding links to message queue

	5
	Authentication data stored in crawl_point table & used by crawler to access Web sites

	6
	Crawler tests redirected pages before continuing

	7
	Crawler stores results in database as it obtains them

	8
	Content Manager extensions

	9
	Web Crawl module uses a dedicated database

	10
	Crawler records its progress in the crawled_pages table of the WebCrawl database.

Appendix A – acronym List

	Acronym
	Description

	CM
	Content Manager

	DBMS
	Database Management System

	DTS
	Data Transformation Services

	ERD
	Entity Relationship Diagram

	GUI
	Graphical User Interface

	MS
	Microsoft

	MSMQ
	Microsoft Message Queue facility

	RTM
	Requirements Traceability Matrix

	SDD
	System Design Document

	SRD
	Software Requirements Document

	URL
	Uniform Resource Locator

 APPENDIX B – DATABASE
B.1
Database Design Policy

In accordance with an internal design standard, six standard columns (metacolumns) are defined for every table. None of these columns is essential to the primary purpose of the system. One of them, deleted_fl, makes possible an undelete mechanism. Another, dirty_fl, makes it possible for the system to identify rows with dependent data that need to be updated because the data on which they depend have changed. This feature permits the system to improve performance by performing incremental, rather than global, updates. The other columns are useful for administrative purposes.

· deleted_fl

short

This flag, when set, indicates that a row has been nominally deleted. When this is the case, the actual row is maintained only to support restoration (undelete) if need be. In all other situations, the system should ignore the presence of this row.

· dirty_fl

short

This flag, when set, indicates that data on which the row depends have been updated, and that processing which performs incremental updates should incorporate the changed data.

· create_dt

datetime

This column contains the date and time that a row was originally inserted into a table. Its presence is sometimes useful for debugging.

· update_dt

datetime

This column contains the date and time that a row was last updated. Its presence is sometimes useful for debugging.

· update_nm

varchar(30)

This column contains the identity of the user who last updated a row. Its presence is sometimes useful for debugging.

· ts

timestamp

This column provides a row identifier that is unique within the database. It supports automatic conflict resolution in a multitasking environment.
B.2
Entity Relationship Diagrams (ERD’s)
Following are the entity relationship diagrams for the WebCrawl database and the relevant portion of the doc_library database. The two small tables, active_queue and crawled_pages, do not contain the usual metacolumns described above because they are work tables, used only by the crawler, and truncated at the beginning of each crawling session. The other three tables in the WebCrawl database have no primary keys or relational integrity declared in that database, although their counterparts in the doc_library database do have those features. In the WebCrawl database, these tables are used only by the crawler and omit the declared features for the sake of performance.
[image: image6.jpg]WebCrawl

Table in red is a copy of counterpart in doc_library
Tables i blue are replicated to doc_library after crawling

crawl_page_type active_queue crawled_pages
PK PK | page

crawl_page_type_id queue_nm page_url

name_str create_dt doc_id

deleted_fl
dirty_f
create_dt
update_dt
update_nm
ts

crawl_page_meta

crawl_page_meta_id
doc_crawl_page_id
name_str
content_str
deleted_fl

dirty_f

create_dt

update_dt
update_nm

ts

doc_crawl_page

doc_crawl_page_id
doc_id
crawl_page_url
crawl_page_type_id
title_str

updated_fl
craw_file
page_ext
deleted_fl

dirty f

create_dt
update_dt
update_nm

ts

[image: image7.jpg]Doc_library Database
(New & related tables)

Tables outlined in red are newly added to doc_library

field_type. crawl_point crawl_page_meta crawl_page_type
PK [field_type id PK [crawl_point_id PK | crawl page meta id | |PK |crawl page type id
U1 | name_str crawl_point_url FK1 | doc_crawl_page_id name_str
description_str root_str name_str deleted_fl
deleted_f crawl_auth_type_id content str dirty_n
dirty_fi crawl_id_str deleted_fl create_dt
create_dt crawl_pw_str dirty i update_dt
update_dt append_str create_dt update_nm
update_nm page_depth_int update_dt ts
s max_pages_int update_nm
active_fl ts
f deleted_fi
airty_l
FE create_dt
updats_at
PK_[field_ia i doc_orawl_page
feld_status._id s L Pk [doc crawl page id
FK1 |field_type_id A
code_str FK2 |doc_i
name. str crawl_page_url
delimit_str FK1 | crawl_page_type_i
parent_id doc_field_crawl_point le_str
level_id updated f
generated_fi PK | doc field crawl_point_id crawl_file
pr page ext
Soorm K2 [doo id deetea 1
multi_select FK3 | field_id dirty_fl
Tt | 7K1 |craw paint id create_dt
header_txt deleted_l update_dt
footer_txt dity update_nm
deleted_fl ereaiedt ts
g update_at
oo dt update_nm
update_ot s
update_nm
ts
doc_status doc
PK |doc_status_id PK_|doc id
doc_crawl_exclude_url
U1 [name_str doc_nbr
sort_seq focked_f PK | doc_craw_exclude_url_id
published_status_fl update_pending_fl
Visible, on_prop. A || FK1 [doc_status 4 g exclude_url
visible_on_prod_fl published_dt FK1 | doc_id
deleted_fl deleted_fi — deleted_fl
dirty_fl dirty_fl dirty_fl
create_dt create_dt create_dt
update_dt update_dt update_dt
update_nm update_nm update_nm
ts ts ts

B.3
Data Dictionaries

Following are the data dictionaries for the WebCrawl database and the relevant portion of the doc_library database. For the sake of clarity, the listings of the metacolumns, described at the beginning of this Appendix, are omitted as needlessly repetitive.
WebCrawl Database

Database summary

Target DBMS:
Microsoft SQL Server

Number of tables:
5

Number of views:
0

Number of columns:
47
Number of indexes:
0

Number of foreign keys:
0

	Tables
	Columns
	Indexes
	Foreign keys
	Notes

	active_queue
	8
	0
	0
	List of message queues currently being served

	crawl_page_meta
	10
	0
	0
	Holds the meta tags from web pages that have been crawled

	crawl_page_type
	8
	0
	0
	Master list of web page types that might be crawled

	crawled_pages
	9
	0
	0
	List of web pages that have been crawled

	doc_crawl_page
	12
	0
	0
	Master list of successfully crawled web pages

active_queue

Physical name:
active_queue

Notes:
List of message queues currently being served

Number of columns:
8

Number of indexes:
0

Number of foreign keys:
0

	Column details

1. queue_id
Physical name:
queue_id

Physical data type:
int identity

Allow NULLs:
Not allowed

2. queue_nm
Physical name:
queue_nm

Physical data type:
varchar(1024)

Allow NULLs:
Allowed

Notes:
Name of queue

crawl_page_meta

Physical name:
crawl_page_meta

Notes:
Holds the meta tags from web pages that have been crawled

Number of columns:
10

Number of indexes:
0

Number of foreign keys:
0

	Column details

1. crawl_page_meta_id
Physical name:
crawl_page_meta_id

Physical data type:
int identity

Allow NULLs:
Not allowed

2. doc_crawl_page_id
Physical name:
doc_crawl_page_id

Physical data type:
int

Allow NULLs:
Not allowed

Notes:
Web page whose text is represented

3. name_str
Physical name:
name_str

Physical data type:
varchar(512)

Allow NULLs:
Not allowed

Notes:
Meta tag name

4. content_str
Physical name:
content_str

Physical data type:
varchar(8000)

Allow NULLs:
Allowed

Notes:
Tagged content

crawl_page_type

Physical name:
crawl_page_type

Notes:
Master list of web page types that might be crawled

Number of columns:
8

Number of indexes:
0

Number of foreign keys:
0

	Column details

1. crawl_page_type_id
Physical name:
crawl_page_type_id

Physical data type:
int identity

Allow NULLs:
Not allowed

2. name_str
Physical name:
name_str

Physical data type:
varchar(50)

Allow NULLs:
Not allowed

Notes:
Descriptive name of page type

crawled_pages

Physical name:
crawled_pages

Notes:
List of web pages that have been crawled

Number of columns:
9

Number of indexes:
0

Number of foreign keys:
0

	Column details

1. page_id
Physical name:
page_id

Physical data type:
int identity

Allow NULLs:
Not allowed

2. page_url
Physical name:
page_url

Physical data type:
varchar(500)

Allow NULLs:
Not allowed

Notes:
URL of crawled web page

3. doc_id
Physical name:
doc_id

Physical data type:
int

Allow NULLs:
Not allowed

Notes:
Document for which web page was crawled

doc_crawl_page

Physical name:
doc_crawl_page

Notes:
Master list of successfully crawled web pages

Number of columns:
12

Number of indexes:
0

Number of foreign keys:
0

	Column details

1. doc_crawl_page_id
Physical name:
doc_crawl_page_id

Physical data type:
int identity

Allow NULLs:
Not allowed

2. doc_id
Physical name:
doc_id

Physical data type:
int

Allow NULLs:
Not allowed

Notes:
Document for which web page was crawled

3. crawl_page_url
Physical name:
crawl_page_url

Physical data type:
varchar(512)

Allow NULLs:
Not allowed

Notes:
URL of crawled web page

4. crawl_page_type_id
Physical name:
crawl_page_type_id

Physical data type:
int

Allow NULLs:
Not allowed

Notes:
Type of crawled web page

5. title_str
Physical name:
title_str

Physical data type:
varchar(255)

Allow NULLs:
Allowed

Notes:
Title of crawled web page

6. updated_fl
Physical name:
updated_fl

Physical data type:
tinyint

Allow NULLs:
Allowed

Default value:
1

Notes:
Flag indicating that web page was found and successfully indexed
7. crawl_file
Physical name:
crawl_file

Physical data type:
OLE

Allow NULLs:
Allowed

Notes:
Exact contents of web page in binary form

8. page_ext
Physical name:
page_ext
Physical data type:
varchar(50)

Allow NULLs:
Allowed

Notes:
Document format to pass to indexing service

Doc_library Database
Additional Tables

Database summary

Target DBMS:
Microsoft SQL Server

Number of tables:
6

Number of views:
0

Number of columns:
67

Number of indexes:
0

Number of foreign keys:
7

	Tables
	Columns
	Indexes
	Foreign keys
	Notes

	crawl_page_meta
	10
	0
	1
	Holds the meta tags from web pages that have been crawled

	crawl_page_type
	8
	0
	0
	Master list of web page types that might be crawled

	crawl_point
	16
	0
	0
	Web sites at which web crawling excursions begin

	doc_crawl_exclude_url
	9
	0
	1
	List of URL's to exclude from web crawling for a specified document

	doc_crawl_page
	14
	0
	2
	Master list of successfully crawled web pages

	doc_field_crawl_point
	10
	0
	3
	Links a crawl point to its field and a specific document

crawl_page_meta

Physical name:
crawl_page_meta

Notes:
Holds the meta tags from web pages that have been crawled

Number of columns:
10

Number of indexes:
0

Number of foreign keys:
1

Primary key:
crawl_page_meta_id

	Foreign keys
	Child
	Parent

	doc_crawl_page_crawl_page_meta_FK1
	doc_crawl_page_id
	doc_crawl_page.doc_crawl_page_id

	Column details

1. crawl_page_meta_id
Physical name:
crawl_page_meta_id

Physical data type:
int

Allow NULLs:
Not allowed

2. doc_crawl_page_id (FK)

Physical name:
doc_crawl_page_id

Physical data type:
int

Allow NULLs:
Not allowed

Notes:
Web page whose text is represented

3. name_str
Physical name:
name_str

Physical data type:
varchar(512)

Allow NULLs:
Not allowed

Notes:
Meta tag name

4. content_str
Physical name:
content_str

Physical data type:
varchar(8000)

Allow NULLs:
Allowed

Notes:
Tagged content

crawl_page_type

Physical name:
crawl_page_type

Notes:
Master list of web page types that might be crawled

Number of columns:
8

Number of indexes:
0

Number of foreign keys:
0

Primary key:
crawl_page_type_id

	Column details

1. crawl_page_type_id
Physical name:
crawl_page_type_id

Physical data type:
int

Allow NULLs:
Not allowed

2. name_str
Physical name:
name_str

Physical data type:
varchar(50)

Allow NULLs:
Not allowed

Notes:
Descriptive name of page type

crawl_point

Physical name:
crawl_point

Notes:
Web sites at which web crawling excursions begin

Number of columns:
16

Number of indexes:
0

Number of foreign keys:
0

Primary key:
crawl_point_id

	Column details

1. crawl_point_id
Physical name:
crawl_point_id

Physical data type:
int

Allow NULLs:
Not allowed

2. crawl_point_url
Physical name:
crawl_point_url

Physical data type:
varchar(255)

Allow NULLs:
Not allowed

Notes:
URL of starting web page

3. root_str
Physical name:
root_str

Physical data type:
varchar(255)

Allow NULLs:
Not allowed

Notes:
Root string confining web links to be followed

4. crawl_auth_type_id
Physical name:
crawl_auth_type_id

Physical data type:
int

Allow NULLs:
Allowed

Default value:
0

Notes:
Type of authentication

5. crawl_id_str
Physical name:
crawl_id_str

Physical data type:
varchar(50)

Allow NULLs:
Allowed

Notes:
ID for authentication

6. crawl_pw_str
Physical name:
crawl_pw_str

Physical data type:
varchar(50)

Allow NULLs:
Allowed

Notes:
Password for authentication

7. append_str
Physical name:
append_str

Physical data type:
varchar(50)

Allow NULLs:
Allowed

Notes:
Appendix to access string

8. page_depth_int
Physical name:
page_depth_int

Physical data type:
int

Allow NULLs:
Not allowed

Default value:
0

Notes:
Depth limit to crawling

9. max_pages_int
Physical name:
max_pages_int

Physical data type:
int

Allow NULLs:
Allowed

Default value:
0

Notes:
Limit on number of pages to crawl

10. active_fl
Physical name:
active_fl

Physical data type:
tinyint

Allow NULLs:
Allowed

Default value:
1

Notes:
Flag indicating whether crawl point is active

doc_crawl_exclude_url

Physical name:
doc_crawl_exclude_url

Notes:
List of URL's to exclude from web crawling for a specified document

Number of columns:
9

Number of indexes:
0

Number of foreign keys:
1

Primary key:
doc_crawl_exclude_url_id

	Foreign keys
	Child
	Parent

	FK_doc_crawl_exclude_url_doc
	doc_id
	doc.doc_id

	Column details

1. doc_crawl_exclude_url_id
Physical name:
doc_crawl_exclude_url_id

Physical data type:
int

Allow NULLs:
Not allowed

2. exclude_url
Physical name:
exclude_url

Physical data type:
varchar(512)

Allow NULLs:
Not allowed

Notes:
URL to be excluded from crawling

3. doc_id (FK)

Physical name:
doc_id

Physical data type:
int

Allow NULLs:
Not allowed

Notes:
Document for which URL is to be excluded from crawling

doc_crawl_page

Physical name:
doc_crawl_page

Notes:
Master list of successfully crawled web pages

Number of columns:
14

Number of indexes:
0

Number of foreign keys:
2

Primary key:
	Foreign keys
	Child
	Parent

	crawl_page_type_doc_crawl_page_FK1
	crawl_page_type_id
	crawl_page_type.crawl_page_type_id

	doc_doc_crawl_page_FK1
	doc_id
	doc.doc_id

	Column details

1. doc_crawl_page_id
Physical name:
doc_crawl_page_id

Physical data type:
int

Allow NULLs:
Not allowed

2. doc_id (FK)

Physical name:
doc_id

Physical data type:
int

Allow NULLs:
Not allowed

Notes:
Document for which page was crawled

3. crawl_page_url
Physical name:
crawl_page_url

Physical data type:
varchar(512)

Allow NULLs:
Not allowed

Notes:
URL of crawled web page

4. title_str
Physical name:
title_str

Physical data type:
varchar(255)

Allow NULLs:
Allowed

Notes:
Title of crawled web page

5. updated_fl
Physical name:
updated_fl

Physical data type:
tinyint

Allow NULLs:
Allowed

Default value:
1

Notes:
Flag indicating that web page was found and successfully indexed

6. crawl_page_type_id (FK)

Physical name:
crawl_page_type_id

Physical data type:
int

Allow NULLs:
Allowed

Notes:
Type of web page

7. crawl_file
Physical name:
crawl_file

Physical data type:
LONGBINARY

Allow NULLs:
Allowed

Notes:
Exact contents of web page in binary form

8. page_ext
Physical name:
page_ext

Physical data type:
VARCHAR(50)

Allow NULLs:
Allowed

Notes:
Document format to pass to indexing service

doc_field_crawl_point

Physical name:
doc_field_crawl_point

Notes:
Links a crawl point to its field and a specific document

Number of columns:
10

Number of indexes:
0

Number of foreign keys:
3

Primary key:
doc_field_crawl_point_id

	Foreign keys
	Child
	Parent

	FK_doc_field_crawl_point_crawl_point
	crawl_point_id
	crawl_point.crawl_point_id

	FK_doc_field_crawl_point_doc
	doc_id
	doc.doc_id

	field_doc_field_crawl_point_FK1
	field_id
	field.field_id

	Column details

1. doc_field_crawl_point_id
Physical name:
doc_field_crawl_point_id

Physical data type:
int

Allow NULLs:
Not allowed

2. doc_id (FK)

Physical name:
doc_id

Physical data type:
int

Allow NULLs:
Allowed

Notes:
Document for which crawl point is defined

3. field_id (FK)

Physical name:
field_id

Physical data type:
int

Allow NULLs:
Allowed

Notes:
Crawl point field

4. crawl_point_id (FK)

Physical name:
crawl_point_id

Physical data type:
int

Allow NULLs:
Allowed

Notes:
Crawl point to be linked

January 24, 2006

